Denoising Dictionary Learning Against Adversarial Perturbations
نویسندگان
چکیده
We propose denoising dictionary learning (DDL), a simple yet effective technique as a protection measure against adversarial perturbations. We examined denoising dictionary learning on MNIST and CIFAR10 perturbed under two different perturbation techniques, fast gradient sign (FGSM) and jacobian saliency maps (JSMA). We evaluated it against five different deep neural networks (DNN) representing the building blocks of most recent architectures indicating a successive progression of model complexity of each other. We show that each model tends to capture different representations based on their architecture. For each model we recorded its accuracy both on the perturbed test data previously misclassified with high confidence and on the denoised one after the reconstruction using dictionary learning. The reconstruction quality of each data point is assessed by means of PSNR (Peak Signal to Noise Ratio) and Structure Similarity Index (SSI). We show that after applying (DDL) the reconstruction of the original data point from a noisy sample results in a correct prediction with high confidence.
منابع مشابه
A Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique
In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...
متن کاملDivide, Denoise, and Defend against Adversarial Attacks
Deep neural networks, although shown to be a successful class of machine learning algorithms, are known to be extremely unstable to adversarial perturbations. Improving the robustness of neural networks against these attacks is important, especially for security-critical applications. To defend against such attacks, we propose dividing the input image into multiple patches, denoising each patch...
متن کاملEnsemble Methods as a Defense to Adversarial Perturbations Against Deep Neural Networks
Deep learning has become the state of the art approach in many machine learning problems such as classication. It has recently been shown that deep learning is highly vulnerable to adversarial perturbations. Taking the camera systems of self-driving cars as an example, small adversarial perturbations can cause the system to make errors in important tasks, such as classifying trac signs or det...
متن کاملLearning Sparse Adversarial Dictionaries For Multi-Class Audio Classification
Audio events are quite often overlapping in nature, and more prone to noise than visual signals. There has been increasing evidence for the superior performance of representations learned using sparse dictionaries for applications like audio denoising and speech enhancement. This paper concentrates on modifying the traditional reconstructive dictionary learning algorithms, by incorporating a di...
متن کاملDeflecting Adversarial Attacks with Pixel Deflection
CNNs are poised to become integral parts of many critical systems. Despite their robustness to natural variations, image pixel values can be manipulated, via small, carefully crafted, imperceptible perturbations, to cause a model to misclassify images. We present an algorithm to process an image so that classification accuracy is significantly preserved in the presence of such adversarial manip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.02257 شماره
صفحات -
تاریخ انتشار 2018